
Abstract. The process capability index Cpk has been widely used in the
manufacturing industry to provide numerical measures on process perfor-
mance. Since Cpk is a yield-based index which is independent of the target T,
it fails to account for process centering with symmetric tolerances, and pre-
sents an even greater problem with asymmetric tolerances. Pearn and Chen
(1998) considered a new generalization C00pk which was shown to be superior
to other existing generalizations of Cpk for processes with asymmetric toler-
ances. In this paper, we investigate the relation between the fraction non-
conforming and the value of C00pk. Furthermore, we derive explicit forms of the
cumulative distribution function and the probability density function for the
natural estimator Ĉ00pk, under the assumption of normality. We also develop a
decision making rule based on the natural estimator Ĉ00pk, which can be used to
test whether the process is capable or not.

Key words: Asymmetric tolerance; Decision making rule; Normally distrib-
uted process; Process yield.

1 Introduction

Process capability indices (PCIs), providing numerical measures of whether or
not the ability of a manufacturing process meets a preset level of production
tolerance, have recently been a research focus in quality assurance literature.
Examples include Kane (1986), Chan et al. (1988), Zhang et al. (1991), Boyles
(1991 and 1994), Pearn et al. (1992), Vännman and Kotz (1995), Vänn-
man(1997), Pearn and Chen (1998), Chen et al. (1999), and Kotz and Johnson
(2002).

Among various capability indices that have been introduced, Cpk is de-
fined as
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Cpk ¼
minfUSL� l; l� LSLg

3r
; ð1Þ

which can be alternatively written as:

Cpk ¼
d� jl�mj

3r
; ð2Þ

where l is the process mean, r is the process standard deviation, USL and
LSL are the upper and the lower specification limits, respectively,
m ¼ ðUSLþ LSLÞ=2, and d ¼ ðUSL� LSLÞ=2. The index Cpk has been
widely used in the manufacturing industry, and provides a measure of process
yield. In fact, we can calculate the process yield as

2Uð3CpkÞ � 1 <%Yield < Uð3CpkÞ
if the process is normally distributed, where Uð�Þ is the cumulative function
for the standard normal distribution. To investigate the relationship between
the capability indices and the process yield, Boyles (1994) considered the
index Spk, a generalization of Cpk, which is defined as:

Spk ¼
1

3
U�1

1

2
U

USL� l
r

� �
þ 1

2
U

l� LSL

r

� �� �
; ð3Þ

where U�1 is the inverse function of U. For normally distributed process, the
index Spk is a one-to-one transformation of fraction nonconforming (per-
centage of defective items). We note that given Spk ¼ c, we can calculate the
process yield as 2Uð3cÞ � 1. Therefore, Spk represents the actual process yield
unlike Cpk which is only approximately related to process yield (Boyles
(1994)).

A process is said to have a symmetric tolerance if the target value T is the
midpoint of the specification interval (LSL, USL), i.e. T ¼ m. Although cases
with symmetric tolerances are common in practical situations, cases with
asymmetric tolerances ðT 6¼ mÞ often occur in the manufacturing industry.

Since both Cpk and Spk are independent of target value T, then they do not
take into account the asymmetry of the tolerance. Both Cpk and Spk fail to
distinguish between on-target and off-target processes for processes with
asymmetric tolerances. Hence, both Cpk and Spk cannot provide consistent
and reasonable measures on process capability for processes with asymmetric
tolerances. To overcome the problem, Pearn and Chen (1998) proposed the
index C00pk which was shown to be superior to other existing generalizations
of Cpk for processes with asymmetric tolerances. Under the assumption of
normality, Pearn and Chen (1998) considered the natural estimator Ĉ00pk of
C00pk, and obtained the exact formula for the r-th moment. In this paper, we
investigate the relation between the fraction nonconforming and the value of
C00pk. Furthermore, we derive explicit forms of the cumulative distribution
function and the probability density function of the natural estimator Ĉ00pk,
under the assumption of normality. We show that the cumulative distribution
function and the probability density function of the natural estimator Ĉ00pk can
be expressed in terms of a mixture of the chi-square distribution and the
normal distribution. The explicit forms of the cumulative distribution func-
tion and the probability density function considerably simplify the complexity
for analyzing the statistical properties of the natural estimator Ĉ00pk. We also
analyze the bias and the MSE of the natural estimator Ĉ00pk for normally
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distributed processes with an asymmetric tolerance. In addition, we develop a
decision making rule based on the natural estimator Ĉ00pk, which can be used to
test whether the process is capable or not.

2 The generalization C00pk

Pearn and Chen (1998) proposed index C00pk, a generalization of Cpk for
processes with asymmetric tolerances. The generalization C00pk is defined as:

C00pk ¼
d� �A�

3r
; ð4Þ

where Du ¼ USL� T, D‘ ¼ T� LSL, d� ¼ minfDu;D‘g,
A� ¼ maxfd�ðl� TÞ=Du, d�ðT� lÞ=D‘g. Obviously, if T ¼ m (symmetric
tolerance), then d� ¼ Du ¼ D‘ ¼ d, A� ¼ jl�mj and C00pk reduces to the
original index Cpk. We note that the index C00pk obtains the maximal values at
l = T, regardless of whether the preset specification tolerances are symmetric
or asymmetric.

If l ¼ T, then A� ¼ 0 and C00pk ¼ d�=ð3rÞ. Therefore, if l ¼ T and
C00pk ¼ c, then r ¼ d�=ð3cÞ. Since both C00pk and Spk are functions of ðl; rÞ, we
denote them by C00pkðl; rÞ and Spkðl; rÞ. Figures 1 and 2 display the con-
tours of C00pkðl; rÞ ¼ c (bold) and Spkðl; rÞ ¼ SpkðT; d�=ð3cÞÞ (thin) for
c ¼ 1=3; 2=3; 1; 4=3; 5=3, and 2 (top to bottom in plots) with asymmetric
cases (LSL,T, USL) ¼ (10, 40, 50) and (LSL, T, USL) ¼ (10,34, 50), i.e.,
D‘ : d : Du ¼ 3 : 2 : 1 and D‘ : d : Du ¼ 6 : 5 : 4, respectively. Since C00pk �
SpkðT; d�=ð3C00pkÞÞ for all values of ðl; rÞ, we conclude that given a process
with C00pkðl; rÞ ¼ c the fraction nonconforming would be guaranteed to be
less than that of a process with Spkðl; rÞ ¼ SpkðT; d�=ð3cÞÞ which is
2f1� U½3SpkðT;d�=ð3cÞÞ�g. For a given threshold value of C00pk, we note that
these contours are used to form boundaries, separating the acceptable values
from the unacceptable values of ðl; rÞ. In addition, we have

Fig. 1. Contours of C00pk(l, r) = c (bold) and Spk(l, r) = Spk(T, d
*/(3c)) (thin) for c = 1/3, 2/3, 1,

4/3, 5/3, and 2 (top to bottom in plot) with (LSL, T, USL) = (10, 40, 50).
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where r ¼ D‘=Du. For example, c ¼ 1 with r ¼ 3 gives the fraction noncon-
forming would be guaranteed to be less than 2f1� U½3SpkðT; d�=ð3cÞÞ�g ¼
2� ½Uð3c =minf1; rgÞ þ Uð3cmaxf1; rgÞ� ¼ 2� ½Uð3Þ þ Uð9Þ� ¼ 1350 PPM
for the asymmetric case (LSL, T, USL) ¼ (10, 40, 50) in Figure 1, c ¼ 1 with
r ¼ 3=2 gives the fraction nonconforming would be guaranteed to be
less than 2� ½Uð3Þ þ Uð9=2Þ� ¼ 1353 PPM for the asymmetric case
(LSL, T, USL) ¼ (10, 34, 50) in Figure 2, where ‘‘PPM’’ denotes the ‘‘Parts-
Per-Million’’.

3 Distribution of Ĉ00pk

To estimate the generalization C00pk, Pearn and Chen (1998) considered the
natural estimator Ĉ00pk defined in the following. The natural estimator Ĉ00pk is
obtained by replacing the process mean l and the process variance r2 by their
conventional estimators X and S2, which may be obtained from a stable
process.

Ĉ00pk ¼
d� � Â�

3S
; ð5Þ

where d� ¼ minfDu;D‘g, Â� ¼ maxfd�ðX� TÞ=Du, d�ðT�XÞ=D‘g,
X ¼

Pn
i¼1 Xi=n and S ¼ fðn� 1Þ�1

Pn
i¼1ðXi �XÞ2g1=2 . Obviously, if T ¼ m

(symmetric tolerance), then d� ¼ Du ¼ D‘ ¼ d, Â� ¼ jX�mj and Ĉ00pk re-

duces to Ĉpk, the natural estimator of Cpk discussed by Kotz et al (1993).
We now define B ¼ n1=2ðd�=rÞ, K ¼ ðn� 1ÞS2=r2, Z ¼ n1=2ðX� TÞ=r,

Y ¼ ½maxfðd�=DuÞZ;�ðd�=D‘ÞZg�2, d ¼ n1=2ðl� TÞ=r. Then, the estimator
Ĉ00pk can be written as:

Ĉ00pk ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

ðB�
ffiffiffiffi
Y
p
Þ

3
ffiffiffiffiffiffiffi
nK
p : ð6Þ

Fig. 2. Contours of C00pk(l, r) = c (bold) and Spk(l, r) = Spk(T, d
*/(3c)) (thin) for c = 1/3, 2/3, 1,

4/3, 5/3, and 2 (top to bottom in plot) with (LSL, T, USL) = (10, 34, 50).
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Under the assumption of normality of X, K is distributed as v2n�1, a chi-
square distribution with n� 1 degrees of freedom, and Z is distributed as the
normal distribution Nðd; 1Þ with mean d and variance 1. Let Uð�Þ and /ð�Þ be
the cumulative distribution function and the probability density function of
the standard normal distribution Nð0; 1Þ, respectively. Then, the cumulative
distribution function and the probability density function of Z can be ex-
pressed as: Uðz� dÞ and /ðz� dÞ, respectively. Hence, the cumulative dis-
tribution function of Y can be expressed as:

FYðyÞ ¼ U½ðDu=d
�Þ ffiffiffiyp � d� � U½�ðD‘=d

�Þ ffiffiffiyp � d�: ð7Þ
The probability density function of Y can be expressed as:

fYðyÞ ¼
1

2d�
ffiffiffi
y
p Du/½ðDu=d

�Þ ffiffiffiyp � d� þD‘/½ðD‘=d
�Þ ffiffiffiyp þ d�ð Þ: ð8Þ

FYðyÞ and fYðyÞ can be used to derive the sampling distribution of Ĉ00pk (see
Appendix A).

Therefore, the cumulative distribution function of Ĉ00pk can be obtained as
the following.

F ^C
00
pk

ðxÞ ¼

R1
B2

FK Lðx; yÞð ÞfYðyÞdy; x < 0;

1� FYðB2Þ; x ¼ 0;

1�
RB2

0

FK Lðx; yÞð ÞfYðyÞdy; x > 0;

8>>>>><
>>>>>:

ð9Þ

and the probability density function of Ĉ00pk can be derived as:

f ^C
00
pk

xð Þ ¼

R1
1

fK Lðx;B2tÞ
� �

fY B2t
� � 2Lðx; B2

tÞ
�x dt; x < 0,

R1
0

fK Lðx;B2tÞ
� �

fY B2t
� � 2Lðx; B2tÞ

x dt; x > 0;

8>>><
>>>:

ð10Þ

where B ¼ n1=2ðd�=rÞ, L(x, y) ¼ ðn� 1ÞðB� y1=2Þ2=ð9nx2Þ, FKð�Þ is the
cumulative distribution function of K, fKð�Þ is the probability density func-
tion of K, FYð�Þ is the cumulative distribution function of Y expressed as Eq.
(7), and fYð�Þ is the probability density function of Y expressed as Eq. (8).

As an illustration for some of the results obtained, we plot the probability
density functions of Ĉ00pk for an asymmetric case (D‘ : d : Du ¼ 6 : 5 : 4) with
r ¼ d�=3, n ¼ �1:0;�0:5; 0:5; 1:0, and n ¼ 10; 20; 50, where n ¼ ðl� TÞ=r
and d�¼minfDu;D‘g. Figures 3 and 4 display the plots of the probability
density functions of Ĉ00pk for n ¼ �1:0ðC00pk ¼ 0:78Þ and n ¼ 1:0ðC00pk ¼ 0:67Þ,
respectively. From Figures 3 and 4 we observe that for n ¼ 10 the distribu-
tions are skew and have large spread. We also observe that as n increases the
spread decreases and so does the skewness. We also observe that the esti-
mated index Ĉ00pk is approximately unbiased for sample size n > 50.

Pearn and Chen (1998) derived the r-th moment of Ĉ00pk without using the
distribution of Ĉ00pk. We note that the estimator Ĉ00pk is biased. The magnitude
of the bias is BðĈ00pkÞ ¼ EðĈ00pkÞ � C00pk. The mean square error can be expressed
as MSEðĈ00pkÞ ¼ VarðĈ00pkÞ þ B2ðĈ00pkÞ, where VarðĈ00pkÞ ¼ EðĈ00pkÞ

2 � E2ðĈ00pkÞ is
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the variance of Ĉ00pk. To investigate the behavior of the estimator Ĉ00pk, the bias
and the mean square error are calculated (using Maple computer software)
for various values of n ¼ ðl� TÞ=r, b ¼ d�=r, d‘ ¼ d/D‘, du ¼ d=Du, and
sample size n.

Tables 1, 2, and 3 display the values of C00pk, BðĈ00pkÞ and MSEðĈ00pkÞ for
n ¼ �1:0 (0.5)1.0, ðd‘; duÞ ¼ ð5=6; 5=4Þ, and n ¼ 10ð10Þ50, with b ¼ 3, 4, and
5, respectively. We note that the specification with ðd‘; duÞ ¼ ð5=6; 5=4Þ is
asymmetric.

From Tables 1, 2, and 3, we observe that as the sample size n increases,
both the bias and the mean square error of Ĉ00pk decrease. Figure 5 displays the
plot of the bias of Ĉ00pk (vs. n) with n ¼ 0, 1.0, and �1.0 (from bottom to top in
the plot) for fixed b ¼ 3, d‘ ¼ 5=6, du ¼ 5=4. Figure 6 displays the plot of the
MSE of Ĉ00pk (vs. n) with n ¼ 1:0;�1:0, and 0 (from bottom to top in the plot)
for fixed b ¼ 3, d‘ ¼ 5=6, du ¼ 5=4.

Fig. 3. The pdf of Ĉ
00
pk with r = d*/3, n = )1.0, and n = 10 (bottom), 20 (middle), and 50 (top)

for the asymmetric case Dl : d : Du = 6 : 5 : 4.

Fig. 4. The pdf of Ĉ
00
pk with r = d*/3, n = 1.0, and n = 10 (bottom), 20 (middle), and 50 (top) for

the asymmetric case Dl : d : Du = 6 : 5 : 4.
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From Tables 1, 2, and 3, we also observe that as the value of b increases,
both the bias and the mean square error of Ĉ00pk increase for fixed d‘, du; n, and
n. Figure 7 displays the plot of the bias of Ĉ00pk (vs. n) with b ¼ 3, 4, and
5 (from bottom to top in the plot) for fixed n ¼ 0:5, d‘ ¼ 5=6, du ¼ 5=4.
Figure 8 displays the plot of the MSE of Ĉ00pk (vs. n) with b ¼ 3, 4, and 5 (from
bottom to top in the plot) for fixed n ¼ 0:5, d‘ ¼ 5=6, du ¼ 5=4.

We note that Ĉ00pk is a biased estimator. The results in Tables 1–3, Figures
5 and 7 indicate that the bias of Ĉ00pk is positive when l 6¼ T. That is, C00pk is
generally overestimated by Ĉ00pk. On the other hand, when l ¼ T, we have
A� ¼ 0 and C00pk = d�=ð3rÞ, the bias of Ĉ00pk tends to be negative for some cases
as shown in Tables 1–3 and Figure 5. Thus, Ĉ00pk is smaller than C00pk and the
bias is negative when l = T. This is partially contributed by the fact that Â�

Table 2. The values of C00pk, B(Ĉ00pk) and MSE(Ĉ00pk) for b = 4, n = )1.0(0.5)1.0, d‘ = 5/6,
du = 5/4, and n = 10(10)50

n n = ) 1.0 n = ) 0.5 n = 0 n = 0.5 n = 1.0

bias MSE bias MSE bias MSE bias MSE bias MSE

10 0.1047 0.1264 0.1105 0.1485 0.0490 0.1474 0.1053 0.1427 0.0942 0.1115
20 0.0464 0.0449 0.0505 0.0535 0.0041 0.0551 0.0482 0.0523 0.0418 0.0403
30 0.0298 0.0270 0.0327 0.0322 )0.0058 0.0341 0.0312 0.0317 0.0268 0.0244
40 0.0220 0.0192 0.0241 0.0230 )0.0094 0.0248 0.0230 0.0227 0.0198 0.0175
50 0.0174 0.0150 0.0191 0.0179 )0.0110 0.0195 0.0182 0.0177 0.0156 0.0136

C00pk 1.1111 1.2222 1.3333 1.1667 1.0000

Table 1. The values of C00pk , BðĈ00pk) and MSE(Ĉ00pk) for b = 3, n = )1.0(0.5)1.0, d‘ = 5/6,
du = 5/4, and n = 10(10)50

n n = ) 1.0 n = ) 0.5 n = 0 n = 0.5 n = 1.0

bias MSE bias MSE bias MSE bias MSE bias MSE

10 0.0733 0.0651 0.0791 0.0806 0.0175 0.0807 0.0739 0.0785 0.0628 0.0575
20 0.0325 0.0234 0.0366 0.0295 )0.0099 0.0311 0.0342 0.0296 0.0278 0.0214
30 0.0209 0.0141 0.0237 0.0179 )0.0147 0.0195 0.0223 0.0181 0.0179 0.0131
40 0.0154 0.0101 0.0175 0.0128 )0.0160 0.0142 0.0164 0.0130 0.0132 0.0094
50 0.0122 0.0079 0.0139 0.0099 )0.0162 0.0113 0.0130 0.0101 0.0104 0.0073

C00pk 0.7778 0.8889 1.0000 0.8333 0.6667

Table 3. The values of C00pk, B(Ĉ00pk) and MSE(Ĉ00pk) for b = 5, n = )1.0(0.5)1.0, d‘ = 5/6,
du = 5/4, and n = 10(10)50

n n = ) 1.0 n = ) 0.5 n = 0 n = 0.5 n = 1.0

bias MSE bias MSE bias MSE bias MSE bias MSE

10 0.1361 0.2092 0.1419 0.2380 0.0804 0.2357 0.1367 0.2286 0.1256 0.1871
20 0.0603 0.0739 0.0644 0.0851 0.0180 0.0867 0.0621 0.0826 0.0557 0.0669
30 0.0387 0.0444 0.0416 0.0511 0.0032 0.0532 0.0401 0.0499 0.0358 0.0403
40 0.0285 0.0316 0.0307 0.0365 )0.0028 0.0385 0.0296 0.0356 0.0263 0.0288
50 0.0226 0.0246 0.0243 0.0283 )0.0058 0.0302 0.0235 0.0277 0.0209 0.0224

C00pk 1.4444 1.5556 1.6667 1.5000 1.3333
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is calculated to be positive (see Eq.(5)) even when l= T and A� ¼ 0. Clearly,
the presence of Â� in Eq. (5) reduces the value of the calculated Ĉ00pk. As the
sample size n increases, the mean square error of Ĉ00pk decreases. Proper
sample sizes for capability estimation are essential. The smaller the sample
size is, the higher the value of Ĉ00pk is required to justify the true process
capability.

4 A decision making rule for testing C00pk

Using the index C00pk, the engineers can access the process performance and
monitor the manufacturing processes on routine basis. To obtain a decision
making rule we consider a testing hypothesis with the null hypothesis C00pk � C
(the process is incapable) and the alternative hypothesis C00pk > C (the process
is capable). The null hypothesis will be rejected if Ĉ00pk > ca, where the con-
stant ca, called the critical value, is determined so that the significance level of
the test is a, i.e., PðĈ00pk > cajC00pk ¼ CÞ ¼ a. The decision making rule to be

Fig. 6. MSE plot of C00pk (vs. n) for b = 3, dl = 5/6, du = 5/4 with n = 1.0, -1.0, and 0 (from
bottom to top in the plot).

Fig. 5. Bias plot of Ĉ
00
pk (vs. n) for b = 3, dl = 5/6, du = 5/4 with n = 0, 1.0, and –1.0 (from

bottom to top in the plot).
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used is then that, for given values of risk a and sample size n, the process will
be considered capable if Ĉ00pk > ca and incapable if Ĉ00pk � ca.

We note that by setting n ¼ ðl� TÞ=r and b ¼ d�=r, the index C00pk can
be rewritten as C00pk ¼ ½bþ n=maxf1; rg�=3 for n < 0 and C00pk ¼
½b� nminf1; rg�=3 for n � 0 where r ¼ D‘=Du. Hence, the value of C00pk can be
calculated given values of n, b, and r. For example, if ðn; b; rÞ ¼ ð�1; 3; 3=2Þ
then C00pk ¼ ½3þ ð�1Þ=maxf1; 3=2g�=3 ¼ 7=9 ¼ 0:7778. If C00pk ¼ C, we have
b ¼ 3C� n=maxf1; rg for n < 0 and b ¼ 3Cþ nminf1; rg for n � 0. In
addition, since B ¼ n1=2ðd�=rÞ and b ¼ d�=r then B2 ¼ nb2. Therefore, if
C00pk ¼ C then

B2 ¼
n 3C� n=maxf1; rgð Þ2; n < 0

n 3Cþ nminf1; rgð Þ2; n � 0:

(
ð11Þ

Fig. 7. Bias plot of Ĉ
00
pk (vs. n) for n = 0.5, dl = 5/6, du = 5/4 with b = 3, 4, and 5 (from bottom

to top in the plot).

Fig. 8.MSE plot of Ĉ
00
pk (vs. n) for n = 0.5, dl = 5/6, du = 5/4 with b = 3, 4, and 5 (from bottom

to top in the plot).
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We can use the central chi-square distribution and the normal distribution to
find the critical value ca satisfying PðĈ00pk > cajC00pk ¼ CÞ ¼ a, i.e.,
1� FĈ00pk

ðcaÞ ¼ a given C00pk ¼ C. We note that ca is larger than zero in gen-
eral, hence we can find ca by Eq. (9)

ZB2

0

FK Lðca; yÞð ÞfYðyÞdy ¼ a; ð12Þ

where B2 is given in Eq. (11) and Lðca; yÞ ¼ ðn� 1ÞðB� y1=2Þ2=ð9nc2aÞ.
We point out that if T ¼ m (symmetric tolerance) then C00pk reduces to

Cpk and Ĉ00pk reduces to Ĉpk. We note that the critical values ca for n ¼ n0
and n ¼ �n0 are the same when T ¼ m (for the proof see Appendix B).
Tables 4a–7b display the critical values ca for C ¼ 1:00; 1:33; 1:66, and 2.00
with sample sizes n ¼ 10ð10Þ100, jnj ¼ 0:0ð0:1Þ1:0 and a-risk ¼ 0:01 and 0.05
for T ¼ m.

To test if the process meets the capability (quality) requirement, we first
determine the value of C and the a-risk. Since both the process parameters l
and r are unknown, then parameter n ¼ ðl� TÞ=r is also unknown. But, we

Table 4a. Critical values ca for C = 1.00 with |n| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and a-risk = 0.01

|n| n = 10 20 30 40 50 60 70 80 90 100

0.00 1.926 1.500 1.369 1.303 1.262 1.233 1.212 1.195 1.182 1.171
0.10 1.988 1.545 1.409 1.340 1.297 1.266 1.244 1.226 1.212 1.200
0.20 2.037 1.578 1.436 1.363 1.316 1.284 1.260 1.240 1.225 1.212
0.30 2.075 1.599 1.451 1.374 1.325 1.290 1.265 1.244 1.228 1.214
0.40 2.101 1.612 1.458 1.378 1.327 1.292 1.265 1.245 1.228 1.214
0.50 2.119 1.618 1.460 1.379 1.328 1.292 1.266 1.245 1.228 1.214
0.60 2.130 1.620 1.461 1.379 1.328 1.292 1.266 1.245 1.228 1.214
0.70 2.136 1.621 1.461 1.379 1.328 1.292 1.266 1.245 1.228 1.214
0.80 2.139 1.621 1.461 1.379 1.328 1.292 1.266 1.245 1.228 1.214
0.90 2.141 1.621 1.461 1.379 1.328 1.292 1.266 1.245 1.228 1.214
1.00 2.141 1.621 1.461 1.379 1.328 1.292 1.266 1.245 1.228 1.214

Table 4b. Critical values ca for C = 1.00 with |n| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and a-risk = 0.05

|n| n = 10 20 30 40 50 60 70 80 90 100

0.00 1.523 1.300 1.227 1.188 1.163 1.146 1.133 1.123 1.115 1.108
0.10 1.572 1.339 1.262 1.221 1.195 1.177 1.163 1.152 1.143 1.135
0.20 1.610 1.367 1.284 1.240 1.212 1.191 1.176 1.164 1.153 1.145
0.30 1.639 1.384 1.296 1.249 1.218 1.196 1.180 1.166 1.155 1.146
0.40 1.659 1.393 1.301 1.252 1.220 1.197 1.180 1.167 1.156 1.147
0.50 1.671 1.397 1.303 1.252 1.220 1.197 1.180 1.167 1.156 1.147
0.60 1.679 1.399 1.303 1.252 1.220 1.197 1.180 1.167 1.156 1.147
0.70 1.683 1.399 1.303 1.252 1.220 1.197 1.180 1.167 1.156 1.147
0.80 1.685 1.399 1.303 1.252 1.220 1.197 1.180 1.167 1.156 1.147
0.90 1.686 1.399 1.303 1.252 1.220 1.197 1.180 1.167 1.156 1.147
1.00 1.686 1.399 1.303 1.252 1.220 1.197 1.180 1.167 1.156 1.147
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can estimate n by calculating the value n̂ ¼ ðX� TÞ=S from the sample. If the
estimated value Ĉ00pk is larger than the critical value caðĈ00pk > caÞ, then we
conclude that the process meets the capability requirement ðC00pk > CÞ.
Otherwise, we do not have sufficient information to conclude that the process

Table 5a. Critical values ca for C = 1.33 with |n| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and a-risk = 0.01

|n| n = 10 20 30 40 50 60 70 80 90 100

0.00 2.606 2.017 1.837 1.746 1.689 1.650 1.620 1.597 1.579 1.564
0.10 2.667 2.062 1.877 1.782 1.723 1.682 1.652 1.628 1.608 1.592
0.20 2.716 2.094 1.902 1.804 1.742 1.698 1.666 1.641 1.620 1.603
0.30 2.751 2.113 1.915 1.813 1.749 1.704 1.670 1.644 1.622 1.605
0.40 2.776 2.124 1.921 1.817 1.751 1.705 1.671 1.644 1.623 1.605
0.50 2.792 2.129 1.923 1.817 1.751 1.705 1.671 1.644 1.623 1.605
0.60 2.802 2.131 1.924 1.817 1.751 1.705 1.671 1.644 1.623 1.605
0.70 2.807 2.132 1.924 1.817 1.751 1.705 1.671 1.644 1.623 1.605
0.80 2.809 2.132 1.924 1.817 1.751 1.705 1.671 1.644 1.623 1.605
0.90 2.811 2.132 1.924 1.817 1.751 1.705 1.671 1.644 1.623 1.605
1.00 2.811 2.132 1.924 1.817 1.751 1.705 1.671 1.644 1.623 1.605

Table 5b. Critical values ca for C = 1.33 with |n| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and a-risk = 0.05

|n| n = 10 20 30 40 50 60 70 80 90 100

0.00 2.062 1.750 1.647 1.593 1.558 1.534 1.516 1.502 1.491 1.481
0.10 2.111 1.789 1.682 1.626 1.590 1.564 1.545 1.530 1.518 1.508
0.20 2.149 1.815 1.703 1.644 1.605 1.578 1.557 1.541 1.528 1.516
0.30 2.176 1.831 1.714 1.651 1.611 1.582 1.560 1.543 1.529 1.518
0.40 2.194 1.840 1.719 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.50 2.206 1.843 1.720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.60 2.213 1.845 1.720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.70 2.217 1.845 1.720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.80 2.219 1.845 1.720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
0.90 2.219 1.845 1.720 1.654 1.612 1.583 1.561 1.544 1.529 1.518
1.00 2.220 1.845 1.720 1.654 1.612 1.583 1.561 1.544 1.529 1.518

Table 6a. Critical values ca for C = 1.66 with |n| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and a-risk = 0.01

|n| n = 10 20 30 40 50 60 70 80 90 100

0.00 3.287 2.535 2.306 2.190 2.117 2.067 2.029 2.000 1.977 1.958
0.10 3.349 2.580 2.346 2.226 2.151 2.099 2.060 2.030 2.006 1.986
0.20 3.396 2.611 2.370 2.246 2.168 2.114 2.074 2.042 2.016 1.995
0.30 3.431 2.630 2.382 2.255 2.175 2.119 2.077 2.044 2.018 1.997
0.40 3.455 2.639 2.387 2.258 2.177 2.120 2.078 2.045 2.019 1.997
0.50 3.469 2.644 2.389 2.258 2.177 2.120 2.078 2.045 2.019 1.997
0.60 3.479 2.646 2.389 2.258 2.177 2.120 2.078 2.045 2.019 1.997
0.70 3.483 2.646 2.389 2.258 2.177 2.120 2.078 2.045 2.019 1.997
0.80 3.486 2.646 2.389 2.258 2.177 2.120 2.078 2.045 2.019 1.997
0.90 3.487 2.646 2.389 2.258 2.177 2.120 2.078 2.045 2.019 1.997
1.00 3.487 2.646 2.389 2.258 2.177 2.120 2.078 2.045 2.019 1.997
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meets the present capability requirement. In this case, we would believe that
C00pk � C (the process is incapable).

We also can calculate the p-value, i.e. the probability that Ĉ00pk exceed the
observed estimated index given the values of C, n ¼ ðl� TÞ=r, r ¼ D‘=Du,

Table 6b. Critical values ca for C = 1.66 with |n| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and a-risk = 0.05

|n| n = 10 20 30 40 50 60 70 80 90 100

0.00 2.603 2.200 2.068 1.998 1.954 1.923 1.900 1.882 1.867 1.855
0.10 2.651 2.239 2.103 2.031 1.985 1.953 1.928 1.909 1.894 1.881
0.20 2.689 2.265 2.124 2.048 2.000 1.966 1.940 1.919 1.903 1.889
0.30 2.715 2.280 2.134 2.056 2.005 1.970 1.943 1.922 1.904 1.889
0.40 2.733 2.288 2.138 2.058 2.006 1.970 1.943 1.922 1.904 1.890
0.50 2.744 2.291 2.139 2.058 2.006 1.970 1.943 1.922 1.904 1.890
0.60 2.751 2.293 2.140 2.058 2.006 1.970 1.943 1.922 1.904 1.890
0.70 2.754 2.293 2.140 2.058 2.006 1.970 1.943 1.922 1.904 1.890
0.80 2.756 2.293 2.140 2.058 2.006 1.970 1.943 1.922 1.904 1.890
0.90 2.756 2.293 2.140 2.058 2.006 1.970 1.943 1.922 1.904 1.890
1.00 2.757 2.294 2.140 2.058 2.006 1.970 1.943 1.922 1.904 1.890

Table 7a. Critical values ca for C = 2.00 with |n| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and a-risk = 0.01.

|n| n = 10 20 30 40 50 60 70 80 90 100

0.00 3.991 3.070 2.790 2.647 2.559 2.498 2.451 2.416 2.387 2.364
0.10 4.052 3.115 2.829 2.683 2.592 2.529 2.482 2.446 2.416 2.391
0.20 4.099 3.145 2.853 2.703 2.609 2.543 2.495 2.456 2.426 2.400
0.30 4.133 3.163 2.864 2.711 2.615 2.548 2.498 2.459 2.427 2.401
0.40 4.156 3.172 2.869 2.713 2.616 2.549 2.498 2.459 2.428 2.402
0.50 4.170 3.176 2.870 2.714 2.616 2.549 2.498 2.459 2.428 2.402
0.60 4.178 3.178 2.871 2.714 2.616 2.549 2.498 2.459 2.428 2.402
0.70 4.183 3.179 2.871 2.714 2.616 2.549 2.498 2.459 2.428 2.402
0.80 4.185 3.179 2.871 2.714 2.616 2.549 2.498 2.459 2.428 2.402
0.90 4.186 3.179 2.871 2.714 2.616 2.549 2.498 2.459 2.428 2.402
1.00 4.186 3.179 2.871 2.714 2.616 2.549 2.498 2.459 2.428 2.402

Table 7b. Critical values ca for C = 2.00 with |n| = 0.0(0.1)1.0, and sample sizes n = 10(10)100
for T = m and a-risk = 0.05.

|n| n = 10 20 30 40 50 60 70 80 90 100

0.00 3.160 2.665 2.502 2.417 2.362 2.324 2.295 2.273 2.255 2.240
0.10 3.209 2.704 2.537 2.449 2.393 2.353 2.324 2.301 2.282 2.266
0.20 3.246 2.729 2.557 2.466 2.407 2.366 2.334 2.310 2.290 2.273
0.30 3.272 2.744 2.567 2.472 2.412 2.369 2.337 2.312 2.291 2.274
0.40 3.289 2.751 2.571 2.474 2.413 2.370 2.337 2.312 2.291 2.274
0.50 3.300 2.755 2.572 2.475 2.413 2.370 2.337 2.312 2.291 2.274
0.60 3.306 2.756 2.572 2.475 2.413 2.370 2.337 2.312 2.291 2.274
0.70 3.309 2.756 2.572 2.475 2.413 2.370 2.337 2.312 2.291 2.274
0.80 3.311 2.756 2.572 2.475 2.413 2.370 2.337 2.312 2.291 2.274
0.90 3.312 2.756 2.572 2.475 2.413 2.370 2.337 2.312 2.291 2.274
1.00 3.312 2.756 2.572 2.475 2.413 2.370 2.337 2.312 2.291 2.274
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and sample size n, and then compare this probability with the significance
level a. If the estimated index value is c0, given the values of C, n, r, and
sample size n, then the p-value can be calculated as:

p-value¼PðĈ00pk>c0jC00pk¼CÞ¼1�FĈ00pk
ðc0Þ

¼
ZB2

0

FK Lðc0;yÞð Þ 1

2
ffiffiffi
y
p

Du

d�
/½Du

d�
ffiffiffi
y
p �n

ffiffiffi
n
p
�þD‘

d�
/½D‘

d�
ffiffiffi
y
p þn

ffiffiffi
n
p
�

� �
dy;

ð13Þ
where Du=d

� ¼ 1=minf1; rg, D‘=d
� ¼ maxf1; rg, B2 is given in Eq. (11) and

Lðc0; yÞ ¼ ðn� 1ÞðB� y1=2Þ2=ð9nc20Þ. The numerical calculations can be easily
carried out using the Maple computer software, to integrate the function
based on the central chi-square distribution and the normal distribution. If
the p-value is smaller than the a-risk, than we conclude that the process meets
the capability requirement (C00pk > C). Otherwise, we do not have sufficient
information to conclude that the process meets the present capability
requirement. In this case, we would believe that C00pk � C (the process is
incapable).

As an example, we consider the following normally distributed process
with asymmetric specification tolerances LSL ¼ 20, T ¼ 26:5, and
USL ¼ 32. We note that d ¼ ðUSL� LSLÞ=2 ¼ 6, D‘ ¼ T� LSL ¼ 6:5,
Du ¼ USL� T ¼ 5:5, d� ¼ minfD‘;Dug ¼ 5:5, r ¼ D‘=Du ¼ 1:18. To test if
the process meets the capability (quality) requirement, we first determine
C ¼ 1:33, i.e., we define a process with C00pk > 1:33 is capable. If the sample
size n ¼ 100, the sample mean X ¼ 27, and the sample standard deviation
S ¼ 1:10. We can calculate Â� ¼ maxfd�ðX� TÞ=Du, d

�ðT�XÞ=D‘g ¼ 0:5,
n̂ ¼ ðX� TÞ=S ¼ 0:45, and Ĉ00pk ¼ 1:515. We find the corresponding p-value
is 0.055 using the Maple computer software to calculate Eq. (13). We
conclude that the process meets the capability requirement if the a-risk is set
larger than 0.055. If the a-risk is set smaller than 0.055, we do not have
sufficient information to conclude that the process meets the present capa-
bility requirement.

5 An application example

The example presented in the following concerns with the capability of a
process, which produces electronic telecommunication amplifiers (see Pearn
et al. (2001)). The original data and a complete description of this process are
given in Juran Institute (1990). The quality characteristic of interest is the
gain (the boosting ability) of an amplifier. The design of the amplifiers had
called for a gain of 10 decibels (dB) and allowed the amplifiers to be con-
sidered acceptable if the gain fell between 7.75 dB and 12.25 dB, i.e.
(LSL, T,USL) ¼ ð7:75; 10; 12:25Þ. A sample of the gains of 120 amplifiers was
taken by the quality improvement team to estimate the capability of the
manufacturing process producing the amplifiers. Chou et al. (1998) noted that
the data follow a non-Normal distribution. The data were then fitted by an SB
distribution. They also transformed the data to approximate Normality using
the estimated transformation
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Z ¼ 0:96þ 0:98 ln
X� 7:59

4:68þ 7:59�X

� �
: ð14Þ

We note that a significant error may be introduced if someone use the original
specification limits, (LSL, T, USL) ¼ ð7:75; 10; 12:25Þ, to evaluate the quality
through the transformed data. Using the estimated transformation Eq. (14),
we have the transformed specification ðLSL0;T0;USL0Þ ¼ ð�2:31; 1:00; 5:06Þ
as well as the transformed data.

Table 8 displays the sample of the original gains of 120 amplifiers listed in
Juran Institute (1990). A histogram of the data, with the specification limits, is
given in Figure 9. Table 9 displays the corresponding transformed amplifier
gain data, using the estimated transformation in Eq. (14). A histogram of the
transformed data, with the transformed specification limits, is given in
Figure 10. We may now apply a normal-based SPC procedure to the trans-
formed data. We note that the transformed specification (LSL0, T0, USL0) is
asymmetric. Therefore, we apply the proposed generalization C00pk to the
transformed data. To test if the quality of the amplifiers meets the quality

Table 8. The original amplifier gain data

8.1 10.4 8.8 9.7 7.8 9.9 11.7 8.0 9.3 9.0
8.2 8.9 10.1 9.4 9.2 7.9 9.5 10.9 7.8 8.3
9.1 8.4 9.6 11.1 7.9 8.5 8.7 7.8 10.5 8.5
11.5 8.0 7.9 8.3 8.7 10.0 9.4 9.0 9.2 10.7
9.3 9.7 8.7 8.2 8.9 8.6 9.5 9.4 8.8 8.3
8.4 9.1 10.1 7.8 8.1 8.8 8.0 9.2 8.4 7.8
7.9 8.5 9.2 8.7 10.2 7.9 9.8 8.3 9.0 9.6
9.9 10.6 8.6 9.4 8.8 8.2 10.5 9.7 9.1 8.0
8.7 9.8 8.5 8.9 9.1 8.4 8.1 9.5 8.7 9.3
8.1 10.1 9.6 8.3 8.0 9.8 9.0 8.9 8.1 9.7
8.5 8.2 9.0 10.2 9.5 8.3 8.9 9.1 10.3 8.4
8.6 9.2 8.5 9.6 9.0 10.7 8.6 10.0 8.8 8.6

Fig. 9. Histogram of the 120 untransformed amplifier gain data with (LSL, T, USL) = (7.75, 10,
12.25).
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requirement, we first determine C ¼ 1:00, i.e., we define a process with
C00pk > 1:00 is capable. We then calculate d ¼ ðUSL0 � LSL0Þ=2 ¼ 3:685, d� ¼
minfDu, D‘g ¼ minf4:06; 3:31g ¼ 3:31, n ¼ 120, Z ¼

Pn
i¼1 Zi=n ¼ 0:000713,

S2 ¼
Pn

i¼1ðZi � ZÞ2=ðn� 1Þ ¼ 0:985, S ¼ 0:993, Â� ¼ maxfd�ðZ� T0Þ=Du,
d�ðT0 � ZÞ=D‘g ¼ maxf�0:815; 0:999g ¼ 0:999, n̂ ¼ ðZ� T0Þ=S ¼ �1:007,
and Ĉ00pk ¼ ðd� � Â�Þ=ð3SÞ ¼ 0:776. We then find the corresponding p-value
be 0.9999 using the Maple computer software to calculate Eq. (13). Obvi-
ously, the quality of the amplifiers does not meet the quality requirement:
C00pk > 1:00.

While all the 120 amplifiers fell within the specification limits, the low
value of Ĉ00pk shows that the average quality of the amplifiers significantly
deviates from the target value, which is unsatisfactory causing the commu-
nication failed. The quality improvement team could now concentrate their
investigations to find problems causing the manufacturing line incapable, and
find ways to make the process average closer to the target value. Some quality
improvement activities involving Taguchi’s parameter designs should be ini-
tiated to identify the significant factors causing the process failing to cluster
around the target value.

Table 9. The transformed amplifier gain data

)1.1 1.4 )0.1 0.8 )2.0 0.9 2.9 )1.3 0.4 0.1
)0.9 0.0 1.1 0.5 0.3 )1.6 0.6 1.8 )2.0 )0.7
0.2 )0.6 0.7 2.0 )1.6 )0.4 )0.2 )2.0 1.4 )0.4
2.6 )1.3 )1.6 )0.7 )0.2 1.0 0.5 0.1 0.3 1.6
0.4 0.8 )0.2 )0.9 0.0 )0.3 0.6 0.5 )0.1 )0.7

)0.6 0.2 1.1 )2.0 )1.1 )0.1 )1.3 0.3 )0.6 )2.0
)1.6 )0.4 0.3 )0.2 1.2 )1.6 0.9 )0.7 0.1 0.7
0.9 1.5 )0.3 0.5 )0.1 )0.9 1.4 0.8 0.2 )1.3

)0.2 0.9 )0.4 0.0 0.2 )0.6 )1.1 0.6 )0.2 0.4
)1.1 1.1 0.7 )0.7 )1.3 0.9 0.1 0.0 )1.1 0.8
)0.4 )0.9 0.1 1.2 0.6 )0.7 0.0 0.2 1.3 )0.6
)0.3 0.3 )0.4 0.7 0.1 1.6 )0.3 1.0 )0.1 )0.3

Fig. 10. Histogram of the 120 transformed amplifier gain data with (LSL’, T’, USL’) = (-2.31,
1.00, 5.06).
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6 Conclusions

Pearn and Chen (1998) proposed the new generalization C00pk which was
shown to be superior to other existing generalizations of Cpk for processes
with asymmetric tolerances. In this paper, we investigated the relation be-
tween the fraction nonconforming and the value of C00pk. We also obtained the
cumulative distribution function and the probability density function of the
estimated index Ĉ00pk for processes with normal distributions. We showed that
the cumulative distribution function and the probability density function of
Ĉ00pk can be expressed in terms of a mixture of the chi-square distribution and
the normal distribution. Consequently, the complexity for analyzing the
statistical properties of Ĉ00pk is greatly simplified. We also analyzed the bias
and the MSE of the estimated index Ĉ00pk for normally distributed processes.
Furthermore, we also developed a decision making rule, based on the natural
estimator Ĉ00pk. The function of p-value was given and the numerical calcu-
lations of p-value can be easily carried out using mathematical computer
softwares, e.g., Mathematica, Maple, and MatLab. Therefore, the practitio-
ners can use the proposed decision making rules to test whether the process
with asymmetric tolerance is capable or not.
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Appendix A: Derivation of Eq. (9)

Under the assumption of normality, the cumulative distribution function and
the probability density function of Ĉ00pk can be derived as follows.

[Case I]: For x > 0, using the technique of conditioning Ĉ00pk on Y in Eq. (6),
we may obtain

F ^C
00
pk

ðxÞ ¼ PðĈ00pk � xÞ ¼ P
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and x > 0. Hence,
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where B ¼ n1=2ðd�=rÞ, Lðx; yÞ ¼ ðn� 1ÞðB� y1=2Þ2=ð9nx2Þ, F Kð�Þ is the
cumulative distribution function of K, and fYð�Þ is the probability density
function of Y expressed as Eq. (8).

[Case II]: Since K is distributed as v2n�1, then P
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[Case III]: For x ¼ 0, we have

F ^C
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� 	

¼ 1� P Y < B2
� �

¼ 1� FYðB2Þ; ðA3Þ
where FYð�Þ is the cumulative distribution function of Y expressed as Eq. (7).

Combining Eqs. (A1), (A2) and (A3), we obtain Eq. (9) for the
cumulative distribution function of Ĉ00pk. Taking the derivative of the
cumulative distribution function of Ĉ00pk with Leibniz’s rule and changing
the variable with t ¼ y/B2, we obtain the probability density function of
Ĉ00pk in Eq. (10).

Appendix B: Symmetry property of n

Following we will show that given the same values of C, n, and a the critical
values ca for n ¼ n0 and n ¼ �n0 are the same when T ¼ m.

Since if T ¼ m then r ¼ D‘=Du ¼ 1 and by Eq. (11) B2 ¼ D2 ¼
nðd=rÞ2 ¼ nð3Cþ jnjÞ2 given C00pk ¼ C. Furthermore, d ¼ n1=2ðl� TÞ=r ¼
n1=2n and fY(y) expressed as Eq. (8) reduces to

fYðyÞ ¼
1

2
ffiffiffi
y
p /½ ffiffiffiyp �

ffiffiffi
n
p

n� þ /½ ffiffiffiyp þ
ffiffiffi
n
p

n�
� �

¼ 1

2
ffiffiffi
y
p /½ ffiffiffiyp �

ffiffiffi
n
p
jnj� þ /½ ffiffiffiyp þ

ffiffiffi
n
p
jnj�

� �
; for T ¼ m: ðA4Þ

Therefore, the Eq. (12) reduces to

ZD2

0

FK Lðca; yÞð ÞfYðyÞ dy ¼ a; ðA5Þ

where Lðca; yÞ ¼ ðn� 1ÞðD� y1=2Þ2=ð9nc2aÞ with D ¼ n1=2ð3Cþ jnjÞ given
C00pk ¼ C and fYðyÞ expressed as Eq. (A4). We get the same equation if we
substitute n by n0 and (�n0) into Eq. (A5) given the same values of C, n, and
a. Therefore, Eq. (A5) is an even function of n for case T ¼ m. Hence, given
the same values of C, n, and a the critical values ca for n ¼ n0 and n ¼ �n0 are
the same when T ¼ m.
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